Potassium activation of the Na,K-pump in isolated brain microvessels and synaptosomes.
نویسندگان
چکیده
Brain capillary endothelial cells play an important role in ion homeostasis of the brain through the transendothelial transport of Na and K. Since little is known about the regulation of ion transport in these cells, we determined the effect of extracellular potassium concentration ([K]o) on the kinetics of the Na,K-pump in isolated cerebral microvessels using both K uptake and Na efflux as measures of pump activity. In addition, we studied K activation of K uptake into synaptosomes under similar conditions to compare this neuronal system to the capillary. When microvessels were preloaded with 22Na by 30 min incubation in K-free buffer, efflux of 22Na into buffer with varying [K]o was dependent on [K]o and inhibited by 7 mM ouabain. This activation of Na efflux was half maximal at 4.2 mM [K]. Ouabain-sensitive K uptake was also half maximally stimulated by a similar [K] in both Na loaded and non-loaded microvessels. In contrast, K uptake into synaptosomes was half maximal at 0.47 mM K. These results demonstrate that both active Na efflux and K uptake into microvessels in vitro are dependent on [K]o in the physiological range. In contrast, synaptosomal K uptake is near maximal at 3 mM K. This suggests that increases in brain [K]o may stimulate ion transport across the cerebral capillary, but will have little effect on Na,K-pump activity in neurons.
منابع مشابه
Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes
The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests t...
متن کاملDiphenylhydantoin and potassium transport in isolated nerve terminals.
THE ANTIEPILEPTIC ACTION OF DIPHENYLHYDANTOIN (DPH) HAS BEEN EXPLAINED BY TWO DIFFERENT THEORIES: (a) that DPH stimulates the Na-K pump; (b) that DPH specifically blocks the passive translocation of sodium. Since electrophysiological experiments have recently suggested abnormal synaptic mechanisms as the basis for epileptogenic discharges, the action of DPH on K transport within synaptic termin...
متن کاملNa-K-ATPase activity decreases with aging in female rat brain synaptosomes.
To understand why elderly females are better able to tolerate hyponatremia, we measured brain Na-K-ATPase activity to determine whether this adaptive mechanism was affected by age. Using synaptosomes from 2-, 12-, and 19-mo-old female rats, we show in our results that Na-K-ATPase activity changes with age in female rats. Enzyme activity was significantly (P = 0.0026) reduced (17%) from 0.416 +/...
متن کاملDiphenylhydantoin and Potassium Transport in Isolated Nerve
as the basis for epileptogenic discharges, the action of DPH on K transport within synaptic terminals isolated from "normal" rat brain cortex was examined directly. A rapid filtration technique was used to assess in vitro potassium transport within synaptosomes. In vivo DPH did not significantly change endogenous K content within synaptosomes. With sodium (50 mM) and potassium (10 mM) concentra...
متن کاملAbnormal sodium transport in synaptosomes from brain of uremic rats.
The causes of central nervous system (CNS) dysfunction in uremia are not well known and are not completely reversed by dialysis. This problem was investigated in synaptosomes, which are membrane vesicles from synaptic junctions in the brain. We measured Na uptake under conditions of control, veratridine stimulation, and tetrodotoxin inhibition, in synaptosomes from normal and acutely uremic (bl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 524 2 شماره
صفحات -
تاریخ انتشار 1990